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Abstract 
The Multidisciplinary Optimization (MOO) Branch at 

NASA Langley Research Center develops new methods 
and investigates opportunities f o r  applying optimization 
to aerospace vehicle design. This paper describes MDO 
Branch experiences with three applications of 
optimization under uncertainty: ( I )  improved impact 
dynamics fo r  airframes, (2) transonic airfoil optimization 
f o r  low drag, and (3) coupled aerodynamic/structures 
optimization of a 3 - 0  wing. For each case, a brief 
overview of the problem and references to previous 
publications are provided. The three cases are aerospace 
examples of the challenges and opportunities presented 
by optimization under uncertain@. The present paper will 
illustrate a variety of needs f o r  this technology, 
summarize promising methods, and uncover fruitful areas 
for  new research 

1. Introduction 

In 2002, a team 
completed a survey 

of researchers at NASA Langley 
of the state of the art in uncertainty 

quantification (UQ) and in robust or reliability-based 
design of engineering systems [l] .  The team initiated a 
research effort called uncertainty-based methods (UBM) 
and highlighted the need for improved computational and 
experimental methods applied to multidisciplinary 
aerospace vehicle design problems. One of the areas 
recommended for further research was optimization under 
uncertainty. The present paper summarizes recent 
experiences with three separate optimization applications. 
The first application optimizes a simplified airframe finite 
element model (FEM) for improved crashworthiness. The 
second optimization reduces the drag of an airfoil while 
maintaining lift and treats the transonic Mach number as 
an uncertain variable. The third application improves the 
performance of a flexible wing assuming small 
uncertainty in the geometric variables and including 
constraints on payload, compliance, and trimability. 

The three applications have similarities. Each has a cost 
function and/or constraints that are sensitive to uncertain 
parameters. All of the design variables are continuous, 
and the numerical simulations are nonlinear and 
computationally expensive. All three applications show 
the value of optimization under uncertainty compared 
with conventional deterministic optimization. 

The applications are also different in a number of ways. 
For example, one has a large number of design variables 
while the others have only a few variables. The objective 
can be to optimize the expected value of performance or 
to limit the probability of failure. The applications use 
several different UQ methods and different optimization 
approaches. The differences in the applications allow the 
authors to draw general conclusions about the adequacy 
of existing techniques for aerospace applications and to 
compile a prioritized list of enabling technologies that 
require future study. 

2. Aircraft impact dynamics 

The first example of optimization research is motivated 
by the competing goals of reducing the weight of a small 
aircraft while improving its safety and crashworthiness. 
One interesting concept is to design the airframe itself to 
absorb some of the energy from impact. This idea is 
investigated in [2] using a simplified 2-D beam model and 
in [3] using a higher fidelity 3-D model. The 2-D model, 
sketched in Fig. 1, has 166 elements and uses beams and 
lumped masses to capture the basic physics of an 
aluminum fuselage section that is dropped vertically. 
Studying the 2-D model uncovers both the capabilities 
and limitations of UBM for high-fidelity impact dynamic 
applications. 
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Figure 1. Schematic of the 2-D airframe FEM 



A demonstration problem is defined in [2] to investigate 
optimization under uncertainty. The design variables v 
and uncertain parameters u are identified in Table 1. 

Table 1. Design variables and uncertain variables 

symbol Definition 

Inertia 
"3 I LowerFrame I 3.50e-4 I 2.92e-4 I 4.08e-4 

Area 

The deterministic optimization, Problem A, is: 
minimize W 

subject to a aallowable 

dallowable 

v lb  5 vi 5 v,b 

u j = urnem 

where a is the maximum acceleration at the selected 
response location, aall,,,bl, is acceleration considered 
survivable, d is the displacement of the floor beam at the 
monitoring station, and dallowable is the maximum 
displacement. For example, if the clearance between the 
floor beam and the fuselage is dallowable, then this constraint 
discourages the optimization routine from operating with 
physical ly  impossible  displacements .  The 
nondeterministic optimization, Problem B, is the same as 
A except that the constraint d < dallowable is replaced by a 
probabilistic constraint and each u is replaced by a normal 
distribution. 

Optimization Problems A and B were solved by using 
an approximate analysis to reduce the number of 
executions of the MSC.Dytran finite element code [4]. 
The formulation was implemented by using the SIGHT 
commercial software package developed by Engineous 
Software, Inc. [5]. The SIGHT software provides a 
reliability-based optimization approach where the 
optimization algorithm is the Modified Method of 
Feasible Directions, the UQ uses first-order reliability 
method (FORM), and the approximate analysis uses a 
kriging method. 

Several commercial and public domain software 
packages were considered as alternatives to SIGHT [2]. 
Of the candidates, one or two offered a better selection of 
UQ tools with better options for describing input 

distributions and diagnostic printed and graphic output. 
We chose SIGHT because we needed optimization, UQ, 
and approximate analysis tools, and we did not find any 
other software with comparable capabilities. Other 
strengths of the SIGHT package that are useful for 
aerospace applications include tools for task monitoring, 
integrating several disciplinary codes, saving input and 
outputs in a database, and experimenting with various 
optimization algorithms. 
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Figure 2. Impact dynamics optimization results 

As seen in Fig. 2, Problem A converges to a solution 
with less structural weight W and with a displacement d 
that is exactly equal to dallowable. Problem B converges to a 
solution with increased weight but with a greater 
probability that the calculated displacement is physically 
possible. At each of these solutions, approximate values 
of W, a, and d are confirmed by additional executions of 
the MSC.Dytran code. Moreover, the final probability of 
success measure is verified by using both FORM and 
Monte Carlo analyses in the SIGHT package. 

Reference [2] concludes that both Problems A and B 
have potential pitfalls. Problem A produces a design with 
low structural weight, but this design is adequate in only 
50% of the crash scenarios. When mass u3 or impact 
velocity u2 is higher than the mean value, then the floor 
beam probably impacts the fuselage and the acceleration 
calculated by MSC.Dytran is invalid. Problem B produces 
a much more reliable design, but the analysis required for 
each iteration is more computationally expensive and the 
design space is more nonlinear; thus, Problem B requires 
more iterations of the optimization process. 

Several lessons were learned from the impact dynamics 
optimization. First, using an approximate model for UQ 
and optimization is efficient and produces results with 
acceptable accuracy. However, the approximation is only 
valid over a relatively small range of design variable 
values. Thus, if any value of vl changes too much, a new 
set of samples and a new approximate model will be 
required. Second, the computational cost of building the 
approximate model increases with the number of 
uncertain variables; thus, when a high-fidelity model is 



optimized, some variable screening technique is needed to 
decide which variables contribute to the uncertainty of the 
results. Finally, using optimization under uncertainty is a 
good way to avoid nonsensical optimization solutions. In 
this study, the probabilistic constraint successfully steers 
the algorithm away from solutions where FEM predicts a 
physically unrealistic response. 

3. Airfoil shape optimization 

The second example of optimization under uncertainty 
was studied because standard airfoil shape optimization 
procedures can generate noisy airfoils with off-design 
performance degradation [6]. A research initiative at 
NASA Langley investigated uncertainty-based 
optimization approaches for lift-constrained drag 
minimization in high-resolution design spaces. After three 
years of research, a winning strategy is evolving. The 
strategy is called the profile optimization method (POM) 
because it aims to reduce the drag profile over a range of 
flight conditions while keeping the lift at the target value. 

A robust airfoil shape optimization over a transonic 
Mach range is demonstrated in [7]. Airfoil shapes are 
parameterized by B-splines, and a large number of 
vertical coordinates of the spline control points are used 
as design variables. Transonic airfoil performance is 
simulated for turbulent viscous flows in the Mach range 
from M =  0.68 to M =  0.78. 

In general, robust optimization can be considered a 
multiobjective optimization with both the mean and 
variance of a performance measure as the objective 
functions. From this perspective, we can formulate the 
shape optimization over a Mach range as follows: 

min(E(cd)>02 ( C d ) )  

subject to: 
(C) 

c l ( ~ , c x , ~ ) = c j ;  for M~~~ <M<M,,, 
where cl and c d  are the lift and drag coefficients for a 
given airfoil, D is the vector of design variables, M is the 
free-stream Mach number, c; is the target lift value, a is 
the angle of attack needed to achieve c; at M ,  and E ( C d )  

and ( T ( c d )  are the mean and standard deviation of the drag 
coefficient with respect to M. 

One could use any standard multiobjective optimization 
method to find a Pareto solution for Problem C. The 
drawback is that computational fluid dynamics (CFD) 
solutions for transonic turbulent viscous flows are 
computationally expensive. Thus, accurately predicting 
the mean and standard deviation of the drag with respect 
to a uniformly distributed random variable such as M is 
impractical. A natural question is whether one could find 
reasonable approximations of robust solutions when 
reliable information on E ( c d  ) and (T( c d  ) is not available. 
Our strategy is to use a few sample Mach points in the 

given Mach range as the design points. However, we do 
not use a standard numerical optimization procedure. 
Instead, we use the profile optimization procedure to 
reduce the drag simultaneously and proportionally at the 
design points, and consequently, reduce the drag profile 
over the whole Mach range. This process results in a 
simultaneous reduction of the mean and variance of the 
drag over the Mach range. This idea can be formalized by 
the following POM: 

(1) Select design points MI, M,, . . ., M,. 
(2) Evaluate the lift and drag and their gradients. 
(3) Find a trust region size for a linear subproblem 

to achieve simultaneous and proportional drag 
reduction at all design points. 

(4) Compute the least norm solution of the linear 
subproblem . 

(5) Update the D vector and repeat if necessary. 

The linear subproblem mentioned in step (3) is 
formulated as follows: 

cydict (AD, Aai ,Mi) 
A D , A ~ ,  min max l<i<r ed(D,ai ,Mi)  

subject to: 

elpredict (AD,Aai ,Mi)  = C;  

-pip 5 AD 5 pip 
where 6 is the scalar that controls the trust region size, AD 
is the change of design vector, A a l  is the change of the 

angle of attack for MI, and cd 1 are the linear 
predictions of the drag and lift corresponding to the 
modified airfoil shape, respectively. We choose the 
smallest 6 such that the optimal objective function value 
of the above linear subproblem equals (1-y), where y is 
the specified drag reduction rate at the design points 
(ranging from 1% to 4%). 

The POM stated in Problem D is implemented with MPI 
parallel interface. The implemented research code does 
the following: 

predict Cpredict 

uses 2r computer nodes to compute the lift and 
drag and their gradients at r design conditions in 
parallel (i.e., node i computes the lift and its 
gradient at design condition i, and node (r+i) 
computes the drag and its gradient at design 
condition i, for 1 < i < r); 
extracts geometry, function values, and gradient 
information from the outputs of the CFD code; 
formulates and solves the quadratic 
programming problem that produces the least 
norm solution of the linear subproblem 
mentioned in POM; 
updates the input geometry specification file; and 
repeats these steps for each iteration of POM. 



In [7], POM is tested on a realistic airfoil design by 
solving fully turbulent Navier-Stokes equations and the 
corresponding discrete adjoint equations. The initial 
RAE2822 airfoil is parameterized by 35 B-spline control 
points, which allows a free-form deformation of the 
airfoil shape during the optimization process. The x- 
coordinates of the B-spline control points are fixed so that 
the chord length does not change, and the y-coordinates of 
the top and bottom surfaces are used as design variables. 
Additional geometry constraints are included so that the 
maximum airfoil thickness does not decrease, the 
thickness at two spar locations is controlled, and the five 
spline control points near the trailing edge can only 
change as a group. The design points are at M = 0.68, 
0.71, 0.74, and 0.76, with c; = 0.733. The simultaneous 
and proportional drag reduction rate y is 3% 
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Figure 3. Typical drag reduction results for POM 

Figure 4. Comparison of RAE and optimal airfoils 

Fig. 3 shows the drag profiles before and after 10 
iterations of POM. Drag counts for the loth iterate are 
obviously less than those for the original airfoil although 
both airfoils provide the required lift. Fig. 3 shows that 
drag is reduced at the four design points. More 
significantly, Fig. 3 shows that drag is reduced at off- 
design points that are not sampled during the optimization 
strategy. The improvement is greatest at the highest 
Mach number and more modest below M = 0.73, which 
was the design Mach number for the original airfoil. Fig. 

4 shows the difference in shape between the original 
RAE2822 airfoil and the optimal airfoil. 

Several valuable lessons were learned during this 
research. First, POM can produce fairly realistic optimal 
airfoils. This robust optimization strategy helps to 
alleviate off-design performance degradation and the 
efficient shape modification leads to fairly smooth 
optimal airfoil shapes without airfoil smoothing. Second, 
it is important to have relatively accurate gradients of the 
lift and drag coefficients so that the optimizer is not 
adversely affected by the noise in the gradients. Noisy 
gradients tend to lead to unrealistic and random changes 
of the airfoil shape. Once a bump is created on the airfoil, 
the optimizer does not have the ability to remove the 
bump, and it tends to make the airfoil shape more 
oscillatory in the following iterations. Third, to make 
POM a useful tool in real-world design environments, we 
need to incorporate airfoil smoothing, develop more 
flexible drag reduction strategies while enforcing robust 
optimization policy, use more flexible thickness 
constraints that allow thickness locations to change during 
the optimization process, and demonstrate the feasibility 
of POM for 3-D wing design. 

4. Aerodynamic/structural wing design 

The last example of optimization under uncertainty aims 
to improve the performance of a 3-D flexible wing while 
taking into account the coupling between the aerodynamic 
loads and the structural deformation. Geometric 
uncertainty is included by using a first-order second 
moment (FOSM) statistical approximation to propagate 
the input uncertainty through the coupled CFD and FEM 
codes. 
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Figure 5. Potential 3-D wing design variables 

Fig. 5 shows the geometry of the 3-D wing and 
indicates some potential design variables. The traditional 
aerodynamic variables are the airfoil shape and the wing 



planform shape; the traditional structural variables are the 
skin thickness, web thickness and truss cross-sectional 
areas in each of six zones (Le., r1J6). Four design 
variables are identified as being particularly sensitive to 
anticipated levels of manufacturing uncertainty. These are 
t, and z,, the maximum thickness and camber of the root 
airfoil section, and rl and r,, the structural sizing factor 
for the two zones near the root. To compare optimization 
with and without uncertainty, we assume the four design 
variables are statistically independent and normally 
distributed. For the cases discussed here, a coefficient of 
variation equal to 0.0001 was chosen for all design 
variables. 

The optimization problem is stated as: 

Minimize: 
subject to: 

(E) 
g j  + k o j  < O  forj=1,2,3 

where L/D is the lift to drag ratio of the wing, gJ is the j th  
inequality constraint evaluated at the mean of each design 
variable, oJ is the approximate standard deviation of gJ, 
and k is a user-defined parameter that adjusts each 
constraint to achieve a desired probability of satisfaction. 
The objective function is representative of design cruise 
conditions for a transport aircraft. The three constraints 
are probabilistic constraints on payload, trim, and 
compliance requirements. In particular, g ,  is a lower limit 
on payload (i.e., the difference between the total lift and 
the structural weight), g, is a limit on trim difficulty (i.e., 
the wing pitching moment that can be offset by movement 
of the tail surfaces), and g, is an upper limit on 
compliance (i.e., the work performed by the aerodynamic 
loads to deflect the structure). Bounds on the design 
variables and purely geometric constraints on the leading- 
edge radius are also added to Problem E. 

One challenging aspect of this research involves 
integration of disciplinary codes to create the coupled 
analysis. Reference [SI has a description of this process 
and provides important references. The disciplinary codes 
are executed by a separate driver program and by UNIX 
scripts. Each code runs independently, some 
simultaneously on separate processors, and the required 
data transfers between them, also directed by the driver, 
are accomplished via data files. 

The CFD code used for aerodynamic sensitivity analysis 
was generated by applying the automatic differentiation 
code ADIFOR to produce a relatively efficient, direct 
mode, gradient analysis code [9]. The surface geometry, 
volume mesh and structural analysis codes were also 
preprocessed with ADIFOR. The structural analysis code 
used to compute the deflection of the elastic wing was a 
generic finite element code. Because the elastic 
deformation was assumed to be small, linear elasticity 
was deemed to be appropriate. At the wing surface (i.e., 
the interface where aerodynamic load and structural 

deflection information is transferred), nodes of the FEM 
were assumed to be a subset of the CFD aerodynamic 
surface mesh points. This choice allowed for 
simplifications in the data transfers and was deemed 
suitable for these initial 3 -D robust optimization 
demonstrations. 

A deterministic optimization was performed first by 
setting k = 0 in Problem E. That deterministic result was 
used as the initial design for all robust optimizations. The 
deterministic optimization process reduced the airfoil 
section thickness t, to reduce the shock strength, thereby 
reducing the drag and improving the LID. Consequently, 
the thinner wing became more flexible, which allowed the 
tip to twist and increased the magnitude of the pitching 
moment. To satisfy the trim constraint, the structural 
element thickness increased; consequently, the wing 
became heavier. To satisfy the payload constraint, the 
section camber increased. All these changes in design 
affect the wing bending but the compliance constraint is 
never active. 

5: 

f 
$ 

I A  

Figure 6. Change in constraint values with 
increased uncertainty in geometric variables 

Fig. 6 presents the results for the deterministic and 
robust optimizations for several values of k. An increase 
of the parameter k can be interpreted as an increase in the 
specified minimum probability that the constraints are 
satisfied with respect to random inputs. For example, if 
the output responses have a normal Gaussian distribution 
and k = 3, then g j  + 3 o j  5 0 implies that there is at least 
a 99.87% probability that each g j  5 0 constraint is 
satisfied. For k = 1 and k = 2, the corresponding minimum 
probabilities are 84.13% and 97.73%. 

Changes in the constraint boundaries due to changes in 
k are indicated by circles in Fig. 6. Mean values of the 
constraint function greater (less negative) than each circle 
would indicate violated robust constraints; that is, the 
probability of the constraint being satisfied would be less 



than the specified minimum probability. Seemingly small 
changes in minimum probabilities produce substantial 
changes in the normalized constraint values, which must 
be accounted for in the optimization. The effect on the 
design variable values is substantial, but the effect on the 
objective function, and consequently the LID, is rather 
small. As with the robust airfoil shape optimization study, 
it appears that many wing shapes will perform well; 
robust optimization attempts to find that design which 
performs well assuming manufacturing uncertainty. 

We learned several lessons while studying the effect of 
uncertainty on the design of a flexible wing in transonic 
flow. We conclude that a statistical FOSM method is 
appropriate to propagate the input uncertainties through 
the multidisciplinary analyses (e.g., CFD for 
aerodynamics and FEM for structures) to determine 
effects on output parameters. Reference [ 101 used several 
reliability assessment methods to check the accuracy of 
the approximate results in [SI. The first derivatives 
required for the FOSM method can be obtained from 
automatic differentiation of the individual codes used in 
the analysis. This implementation of the statistical 
approach is easy to retrofit into gradient-based design 
codes that already use analytical or semianalytical 
sensitivity derivatives for optimization. However, our 
numerical studies also suggest that increased input 
uncertainty or increased reliability requirements have a 
significant effect on the number of active constraints and 
on the size and shape of the feasible region of design 
space [SI. In an extreme case, the feasible region can 
disappear, and it becomes difficult to judge whether the 
results of the optimization process are useful or not. The 
fact that a deterministic solution exists is no guarantee 
that a solution exists for the robust optimization problem. 

5. Concluding remarks 

This paper briefly describes three aerospace applications 
of optimization under uncertainty, Whereas [ 11 outlines 
the need for all UBM research, this paper focuses on 
practical implementation issues for robust or reliability- 
based optimization. Our experience with the three 
applications and our study of the optimization literature 
leads us to make several recommendations for further 
research. We see the need for: 

Approximation methods for combining 
expensive physics-based analysis with UBM. 
Multiobjective optimization methods that find 
designs with the highest probability of success 
even if there is no feasible design space. 
Efficient and validated UBM for coupled, 
multidisciplinary analysis. 
Methods for including physics-based uncertainty 
quantification in conceptual design and system 
risk assessments. 

(5) Ways to exploit multiple-fidelity models to 
reduce the computational expense of UBM. 

(6) UBM for time-dependant analyses like impact 
dynamics. 

This prioritized list of enabling technologies represents 
the authors’ views of the most pressing issues for 
application of uncertainty-based methods to aerospace 
vehicle design. 
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